

Laser-based-**Headspace Inspection**

Container Closure Integrity of Sterile Pharmaceutical Containers

Laser-based Headspace Analysis

Richard Millett Vice President, Lighthouse Instruments Europe

Definition

Sterile product Container Closure Integrity (CCI)

- The ability of a container (vial, ampoule, syringe, cartridge, bottle etc) to:
- Keep the contents **IN**
- Keep the contaminants **OUT**

Container Closure Integrity impacts…..

What is changing in the guidance & regulations?

- A new revised USP <1207> was implemented in August 2016
- EU Annex 1 undergoing revision
- FDA has announced a revision of their container closure guidance*

What does it mean for the Industry?

- Regulators increasingly critical of CCI data from legacy methods (blue dye, microbial ingress)
- Trend towards quantitative (deterministic) analytical methods
- Emphasis on Science-based justification
- Drive towards a coherent CCI strategy across the Product life cycle

USP <1207.1> Leak Detection Index

Air leak rate at 1-atm differential pressure at 25 C, i.e. vial at full vacuum 5

USP <1207.2> Leak Detection Summary

While no single method is appropriate for all types of containers, Laser Headspace analysis is the only method for all sizes of defects

Characterizing the headspace non-destructively

What gases can be measured?

- Headspace oxygen
- Headspace carbon dioxide
- Headspace moisture (water vapor)
- Headspace total pressure levels

CCI testing – how?

Exchange of gas between the container and the outside environment through a defect

CCI testing: other situations

9

What type of product-packages?

- Sterile liquid, or lyophilized, or dry-powder filled
- Transparent rigid containers:
	- Clear or amber glass
	- Transparent plastics
- Vials, syringes, ampoules, cartridges
- Nominal volume ranging from 0.2mL to 250mL

Advantages & disadvantages

Equipment

100% inspection Multiple heads for total headspace analysis.

Each system comes with calibration and reference standards prepared from your glassware.

Measurement performance

GAS DIFFUSION THEORY Part 2

CCI testing: Gas diffusion theory

$$
\vec{J} = -D\vec{\nabla}n
$$

Fick's 1st Law

$$
\frac{\partial P_i(t)}{\partial t} = \frac{-D \cdot A_0}{V} \frac{\partial P_i(z, t)}{\partial z}
$$

New USP <1207> states:

"Mathematical models appropriate to leak flow dynamics may be used to predict the time required for detecting leaks of various sizes or rates."

The change in oxygen concentration will be exponential with respect to time

Diffusion
Parameter
$$
\alpha_{Diff} \left[\frac{cm^3}{s} \right] = \frac{D \cdot A_0}{L}
$$

The Diffusion Parameter is a function of the Diffusion Coefficient, *D***, the defect cross-sectional Area,** *A⁰* **, and Depth,** *L***.**

Validation of Oxygen Ingress Model

With fixed values for:

 $D = 0.22$ cm²/s $A_0 = 20 \mu m^2 (5 \mu m \phi)$ $V = 18cc$ (15R)

Obtain an empirical depth parameter value:

 $L = 6 \mu m$

Model matches the data ±0.3 %-atm oxygen at every point

Oxygen Ingress Model Example

Predicted oxygen concentration versus time for **ideal defects**

INDUSTRY CASE STUDIES AND EXAMPLES

Part 3

Overview of CCI case studies

- 1.Method development
- 2.Process optimization
- 3.Biologics Cold Storage CCI Study
- 4.100% inspection of lyophilized product

LIGHTHOUSE

Case study 1: Method Development

Objective

• Detection of 5 micron leak within 30 minutes

Sample set

- 6R DIN clear tubing vial 1.5mL product
- Positive controls: 2µm, 5µm,10µm and 15µm laser drilled defects
	- Glass defects
	- Metal plate defects

Nominal hole size 5 um

Image provided by Lenox Laser

 \blacksquare LIGHTHOUSE

Case study 1: Method Development

– **Phase 1: Manufacturing conditions**

• Determine nitrogen purge conditions

– **Phase 2: API reactivity**

• Oxidation rate

– **Phase 3: CCI Method development**

- Diffusion test with vials with know defects (+ve controls)
- Effusion test with vials with know defects (+ve controls)
- Method protocol

LIGHTHOUSE

Case study 1: Method Development

Phase 1: Manufacturing conditions

• 50 product, water-filled and empty samples

JLIGHTHOUSE

Case study 1: Method Development

Phase 2: API reactivity

• 50 product samples opened to air and followed over time

Case study 1: Method Development

Phase 3: CCI method development

• Diffusion tests with vials with known defects

JLIGHTHOUSE

Case study 1: Method Development **Phase 3: CCI method development**

Effusion tests with vials with known defects

Case study 2: Process optimisation

Case

- Liquid product in glass vial under N_2 atmosphere.
- All 200 vials passed visual inspection.

Result

- 192 accepted vials $<$ 2% O₂
- 8 rejected vials ≈ 20% O₂
- Total test time for 200 vials: < 45 minutes

Conclusion

Ineffective crimping caused defective vials with permanent leaks.

Case study 3: CCI testing for vials stored on dry ice (CO₂)

- 2R vials containing a Biologic, headspace 1 atm of air
- Stored on dry ice for 7 days.
- Thawed to room temperature (RT).
- Headspace conditions analyzed.
	- *Any change in the headspace condition would indicate a loss of CCI during deep cold storage*

LIGHTHOUSE

- Air headspace vial at 1 atm at RT
- At low T, initial headspace condenses and creates underpressure
- Stopper can lose elastic properties & closure can be lost
- Cold dense gas from storage environment fills headspace
- Warming container to RT, stopper regains elasticity and reseals trapping the cold dense gas in the vial

Case study 3: CCI testing for vials stored on dry ice (CO₂)

- The cold dense gas trapped inside, expands as temperature increases creating overpressure
- Headspace gas composition could also change depending on storage environment
- Maintenance of changed headspace conditions can be monitored over time to verify that the leak was temporary.

JLIGHTHOUSE

Three different headspace measurements identify the same 3 vials as having CCI issues.

Case study 3: CCI testing for vials stored on dry ice (CO₂)

Some important comments on these results:

- Leaks during deep cold storage are usually temporary!
- CCI methods requiring an active leak *(blue dye, microbial ingress, pressure/vacuum decay)* will NOT identify these vials having temporary leaks.

LIGHTHOUSE

Case study 4: **100% CCI testing of lyo product**

Lyophilised Product closed at 200 mbar of N_{2}

Results of 6 consecutive batches

JLIGHTHOUSE

Case study 4: **100% CCI testing of lyo product**

- 1 atm air vials, gross (permanent) leaks
- Lyo headspace specified to be 200 mbar N_2
- If 800 mbar air enters vial $= 16\%$ O2!
- Partial leaks stopped by capping

ILIGHTHOUSE

Case study 4: **100% CCI testing of lyo product**

Case 100% inspection 5 years of manufacturing data:

- 156 lots
- Total 1.9 million vials

Results

44-lots (28%) with zero rejects

Average reject rate was 0.25%

Difficult to manufacture a perfect CCI lyo batch

LIGHTHOUSE

Thank you for your attention

Demonstration

Let's consider the following product-package:

- Product ampoule closed at 500mbar N_2
- What are the headspace oxygen levels when the...

- **A) … container has retained CCI?**
- **B) … container has just lost closure?**

C) … container has permanently lost closure for some time?