

Laser-based Headspace Inspection

Container Closure Integrity of Sterile Pharmaceutical Containers

Laser-based Headspace Analysis

Richard Millett Vice President, Lighthouse Instruments Europe

Definition

Sterile product Container Closure Integrity (CCI)

- The ability of a container (vial, ampoule, syringe, cartridge, bottle etc) to:
- Keep the contents IN
- Keep the contaminants OUT

Container Closure Integrity impacts....

What is changing in the guidance & regulations?

- A new revised USP <1207> was implemented in August 2016
- EU Annex 1 undergoing revision
- FDA has announced a revision of their container closure guidance*

What does it mean for the Industry?

- Regulators increasingly critical of CCI data from legacy methods (blue dye, microbial ingress)
- Trend towards quantitative (deterministic) analytical methods
- Emphasis on Science-based justification
- Drive towards a coherent CCI strategy across the Product life cycle

USP <1207.1> Leak Detection Index

	Detectable Leaks		
Limit of Detection Index	Air Leak Rate (std cc/S)	Orifice Leak Size (um)	
Class-1	<1 10 ⁻⁶	<0.1	
Class-2	10 ⁻⁶ to 10 ⁻⁴	0.1 to 1	
Class-3	6 x10 ⁻⁴ to 4 x10 ⁻³	2 to 5	
Class-4	5 x10 ⁻³ to 1.6 x10 ⁻²	6 to 10	
Class-5	0.017 to 0.360	11 to 50	
Class-6	>0.360	>50	

Air leak rate at 1-atm differential pressure at 25 C, i.e. vial at full vacuum

USP <1207.2> Leak Detection Summary

	Leak Detection Class	Measurement Outcome
Tracer-gas	Class 1-4	Helium Loss
Laser-Headspace	Class 1-6	Gas Composition or Gas Pressure
HVLD	Class 3-6	Electrical Current
Pressure Decay	Class 3-6	Pressure Drop
Vacuum Decay	Class 3-6	Pressure Rise
Mass Extraction	Class 3-6	Mass Flow

While no single method is appropriate for all types of containers, Laser Headspace analysis is the only method for all sizes of defects

Characterizing the headspace non-destructively

What gases can be measured?

- Headspace oxygen
- Headspace carbon dioxide
- Headspace moisture (water vapor)
- Headspace total pressure levels

CCI testing – how?

Exchange of gas between the container and the outside environment through a defect

CCI testing: other situations

9

What type of product-packages?

- Sterile liquid, or lyophilized, or dry-powder filled
- Transparent rigid containers:
 - Clear or amber glass
 - Transparent plastics
- Vials, syringes, ampoules, cartridges
- Nominal volume ranging from 0.2mL to 250mL

Advantages & disadvantages

Advantages	Disadvantages
Non-destructive	Not all fill levels
Rapid	 Sample needs to be
 Quantitative results 	transparent to laser
 Deterministic method 	Inline production inspection people modified
 Operator independent 	headspace
 Applicable over whole leak range 	
 Permanent & temporary leaks detectable 	

Equipment

100% inspection Multiple heads for total headspace analysis.

Each system comes with calibration and reference standards prepared from your glassware.

Measurement performance

N=100	Headspace Oxygen (% atm)			ے ²⁰	• Measu	
Standard Label	Known Value	Meas. Mean	Error	St. Dev.	ation [% atn - 51	- - -
0.0	0.000	0.01	0.01	0.02	ncentr	- R ²
1.0	1.005	0.96	-0.04	0.03	Ö u 10 -	-
2.0	2.004	1.98	-0.03	0.03	Oxyg	-
4.0	3.998	4.02	0.02	0.04	asured	
8.0	7.999	8.13	0.13	0.03	Me	
20.0	20.00	19.93	-0.06	0.04	0	
			↑ 	↑ 	ſ	Actual
			Accuracy	Precision		

Part 2 GAS DIFFUSION THEORY

CCI testing: Gas diffusion theory

$$\vec{J} = -D\vec{\nabla}n$$

Fick's 1st Law

$$\frac{\partial \mathbf{P}_{i}(t)}{\partial t} = \frac{-D \cdot A_{0}}{V} \frac{\partial \mathbf{P}_{i}(z,t)}{\partial z}$$

New USP <1207> states:

"Mathematical models appropriate to leak flow dynamics may be used to predict the time required for detecting leaks of various sizes or rates."

 $\% Oxygen(t) = 20.9\% \cdot \left[1 - \exp\left(-\frac{\alpha_{Diff}}{V}t\right)\right]$ The change in oxygen concentration will be exponential with respect to time

Diffusion
Parameter
$$\alpha_{Diff} \left[\frac{cm^3}{s} \right] = \frac{D \cdot A_0}{L}$$

The Diffusion Parameter is a function of the Diffusion Coefficient, D, the defect cross-sectional Area, A_0 , and Depth, L.

LIGHTHOUSE

Validation of Oxygen Ingress Model

With fixed values for: $D = 0.22 \text{ cm}^2/\text{s}$ $A_0 = 20 \mu \text{m}^2 (5 \mu \text{m} \text{ø})$ V = 18 cc (15 R)

Obtain an empirical **depth parameter value**:

 $L = 6 \mu m$

Model matches the data ±0.3 %-atm oxygen at every point

Oxygen Ingress Model Example

Predicted oxygen concentration versus time for ideal defects

INDUSTRY CASE STUDIES AND EXAMPLES

Part 3

Overview of CCI case studies

- 1. Method development
- 2. Process optimization
- 3. Biologics Cold Storage CCI Study
- 4.100% inspection of lyophilized product

Case study 1: Method Development

Objective

• Detection of 5 micron leak within 30 minutes

Sample set

- 6R DIN clear tubing vial 1.5mL product
- Positive controls: 2µm, 5µm,10µm and 15µm laser drilled defects
 - Glass defects
 - Metal plate defects

Nominal hole size 5 µm

Image provided by Lenox Laser

Case study 1: Method Development

– Phase 1: Manufacturing conditions

• Determine nitrogen purge conditions

- Phase 2: API reactivity

Oxidation rate

– Phase 3: CCI Method development

- Diffusion test with vials with know defects (+ve controls)
- Effusion test with vials with know defects (+ve controls)
- Method protocol

•••

Case study 1: Method Development

Phase 1: Manufacturing conditions

• 50 product, water-filled and empty samples

Case study 1: Method Development

Phase 2: API reactivity

• 50 product samples opened to air and followed over time

Mean measured headspace oxygen level monitored over time

	Oxygen
	(% atm)
Start	19.59
2 hours	19.50
26 hours	19.18
36 hours	17.63
144 hours	15.76

Case study 1: Method Development

Phase 3: CCI method development

Diffusion tests with vials with known defects

•••

Case study 1: Method Development Phase 3: CCI method development

Effusion tests with vials with known defects

Case study 2: Process optimisation

Case

- Liquid product in glass vial under N₂ atmosphere.
- All 200 vials passed visual inspection.

Result

- 192 accepted vials < $2\% O_2$
- 8 rejected vials $\approx 20\% O_2$
- Total test time for 200 vials:
 < 45 minutes

Conclusion

Ineffective crimping caused defective vials with permanent leaks.

Case study 3: CCI testing for vials stored on dry ice (CO₂)

- 2R vials containing a Biologic, headspace 1 atm of air
- Stored on dry ice for 7 days.
- Thawed to room temperature (RT).
- Headspace conditions analyzed.
 - Any change in the headspace condition would indicate a loss of CCI during deep cold storage

Case study 3: CCI testing for vials stored on dry ice (CO₂)

- Air headspace vial at 1 atm at RT
- At low T, initial headspace condenses and creates underpressure
- Stopper can lose elastic properties & closure can be lost
- Cold dense gas from storage environment fills headspace
- Warming container to RT, stopper regains elasticity and reseals trapping the cold dense gas in the vial

Case study 3: CCI testing for vials stored on dry ice (CO₂)

- The cold dense gas trapped inside, expands as temperature increases creating overpressure
- Headspace gas composition could also change depending on storage environment
- Maintenance of changed headspace conditions can be monitored over time to verify that the leak was temporary.

Case study 3: CCI testing for vials stored on dry ice (CO₂)

Three different headspace measurements identify the same 3 vials as having CCI issues.

Case study 3: CCI testing for vials stored on dry ice (CO₂)

Some important comments on these results:

- Leaks during deep cold storage are usually temporary!
- CCI methods requiring an active leak (blue dye, microbial ingress, pressure/vacuum decay) will NOT identify these vials having temporary leaks.

Case study 4: **100% CCI testing of lyo product**

Lyophilised Product closed at 200 mbar of N₂

Results of 6 consecutive batches

Case study 4: 100% CCI testing of lyo product

- 1 atm air vials, gross (permanent) leaks
- Lyo headspace specified to be 200 mbar N₂
- If 800 mbar air enters vial
 = 16% O2!
- Partial leaks stopped by capping

Case study 4: 100% CCI testing of Iyo product

Case 100% inspection 5 years of manufacturing data:

- 156 lots
- Total 1.9 million vials

Results

44-lots (28%) with zero rejects Average reject rate was 0.25%

Difficult to manufacture a perfect CCI lyo batch

Thank you for your attention

Demonstration

Let's consider the following product-package:

- Product ampoule closed at 500mbar N₂
- What are the headspace oxygen levels when the...

- A) ... container has retained CCI?
- B) ... container has just lost closure?

C) ... container has permanently lost closure for some time?